标签:nbsp ash logs ted com mes rmi ring 生成
Spark-Streaming DirectKafka count 统计跟直接 kafka 统计类似,只不过这里使用的是 Direct 的方式,Direct方式使用的 kafka 低级API,不同的地方主要是在 createDirectStream这里。
统计代码如下
package com.hw.streaming
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
object DirectKafkaWordCount {
def main(args: Array[String]): Unit = {
if (args.length < 2) {
System.err.println(s"""
|Usage: DirectKafkaWordCount <brokers> <topics>
| <brokers> is a list of one or more Kafka brokers
| <topics> is a list of one or more kafka topics to consume from
|
""".stripMargin)
System.exit(1)
}
val Array(brokers, topics) = args
// Create context with 2 second batch interval
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(60))
// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
// smallest和from beiginning是一样的
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers,
"auto.offset.reset"->"smallest"
)
// 生成Dstream
val messages = KafkaUtils
.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)
// Get the lines, split them into words, count the words and print
val lines = messages.map(_._2)
val words = lines.flatMap(_.split(",")(1))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()
// 开始计算
ssc.start()
ssc.awaitTermination()
}
}
启动相关的 flume,kafka,参见:
https://www.cnblogs.com/hanwen1014/p/11260456.html
Spark-Streaming DirectKafka count 案例
标签:nbsp ash logs ted com mes rmi ring 生成
原文地址:https://www.cnblogs.com/hanwen1014/p/11260477.html