标签:编号 exception spl 将不 height 方式 ros 功能 one
MapReduce:其实就是把数据分开处理后再将数据合在一起.

MapReduce中定义了如下的Map和Reduce两个抽象的编程接口,由用户去编程实现.Map和Reduce,
MapReduce处理的数据类型是



MapReduce 的开发一共有八个步骤, 其中 Map 阶段分为 2 个步骤,Shuwle 阶段 4 个步
骤,Reduce 阶段分为 2 个步骤
Map 阶段 2 个步骤
Shuwle 阶段 4 个步骤Reduce 阶段 2 个步骤常用Maven依赖
<packaging>jar</packaging><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.5</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.5</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>2.7.5</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>2.7.5</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>RELEASE</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.1</version><configuration><source>1.8</source><target>1.8</target><encoding>UTF-8</encoding><!-- <verbal>true</verbal>--></configuration></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>2.4.3</version><executions><execution><phase>package</phase><goals><goal>shade</goal></goals><configuration><minimizeJar>true</minimizeJar></configuration></execution></executions></plugin></plugins></build>
入门---统计
结构

/*四个泛型解释:KEYIN :K1的类型VALUEIN: V1的类型KEYOUT: K2的类型VALUEOUT: V2的类型*/public class WordCountMapper extends Mapper<LongWritable,Text, Text , LongWritable> {//map方法就是将K1和V1 转为 K2和V2/*参数:key : K1 行偏移量(默认几乎一直固定为LongWritable)value : V1 每一行的文本数据context :表示上下文对象*//*如何将K1和V1 转为 K2和V2K1 V10 hello,world,hadoop15 hdfs,hive,hello---------------------------K2 V2hello 1world 1hdfs 1hadoop 1hello 1*/@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {Text text = new Text();LongWritable longWritable = new LongWritable();//1:将一行的文本数据进行拆分String[] split = value.toString().split(",");//2:遍历数组,组装 K2 和 V2for (String word : split) {//3:将K2和V2写入上下文text.set(word);longWritable.set(1);context.write(text, longWritable);}}}

/*四个泛型解释:KEYIN: K2类型VALULEIN: V2类型KEYOUT: K3类型VALUEOUT:V3类型*/public class WordCountReducer extends Reducer<Text,LongWritable,Text,LongWritable> {//reduce方法作用: 将新的K2和V2转为 K3和V3 ,将K3和V3写入上下文中/*参数:key : 新K2values: 集合 新 V2context :表示上下文对象----------------------如何将新的K2和V2转为 K3和V3新 K2 V2hello <1,1,1>world <1,1>hadoop <1>------------------------K3 V3hello 3world 2hadoop 1*/@Overrideprotected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {long count = 0;//1:遍历集合,将集合中的数字相加,得到 V3for (LongWritable value : values) {count += value.get();}//2:将K3和V3写入上下文中context.write(key, new LongWritable(count));}}

public class JobMain extends Configured implements Tool {//该方法用于指定一个job任务@Overridepublic int run(String[] args) throws Exception {//1:创建一个job任务对象Job job = Job.getInstance(super.getConf(), "wordcount");//如果打包运行出错,则需要加该配置job.setJarByClass(JobMain.class);//2:配置job任务对象(八个步骤)//第一步:指定文件的读取方式和读取路径job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/wordcount"));//TextInputFormat.addInputPath(job, new Path("file:///D:\\mapreduce\\input"));//第二步:指定Map阶段的处理方式和数据类型job.setMapperClass(WordCountMapper.class);//设置Map阶段K2的类型job.setMapOutputKeyClass(Text.class);//设置Map阶段V2的类型job.setMapOutputValueClass(LongWritable.class);//第三,四,五,六 采用默认的方式//第七步:指定Reduce阶段的处理方式和数据类型job.setReducerClass(WordCountReducer.class);//设置K3的类型job.setOutputKeyClass(Text.class);//设置V3的类型job.setOutputValueClass(LongWritable.class);//第八步: 设置输出类型job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径Path path = new Path("hdfs://node01:8020/wordcount_out");TextOutputFormat.setOutputPath(job, path);//TextOutputFormat.setOutputPath(job, new Path("file:///D:\\mapreduce\\output"));//获取FileSystemFileSystem fileSystem = FileSystem.get(new URI("hdfs://node01:8020"), new Configuration());//判断目录是否存在boolean bl2 = fileSystem.exists(path);if(bl2){//删除目标目录fileSystem.delete(path, true);}//等待任务结束boolean bl = job.waitForCompletion(true);return bl ? 0:1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动job任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}
分区实则目的是按照我们的需求,将不同类型的数据分开处理,最终分开获取
代码实现
结构

public class MyPartitioner extends Partitioner<Text,NullWritable> {/*1:定义分区规则2:返回对应的分区编号*/@Overridepublic int getPartition(Text text, NullWritable nullWritable, int i) {//1:拆分行文本数据(K2),获取中奖字段的值String[] split = text.toString().split("\t");String numStr = split[5];//2:判断中奖字段的值和15的关系,然后返回对应的分区编号if(Integer.parseInt(numStr) > 15){return 1;}else{return 0;}}}
//第三步,指定分区类job.setPartitionerClass(MyPartitioner.class);//第四, 五,六步//设置ReduceTask的个数job.setNumReduceTasks(2);
MapReduce 中的计数器
计数器是收集作业统计信息的有效手段之一,用于质量控制或应用级统计
可辅助诊断系统故障
看能否用一个计数器值来记录某一特定事件的发生 ,比分析一堆日志文件容易

通过enum枚举类型来定义计数器 统计reduce端数据的输入的key有多少个
public class PartitionerReducer extends Reducer<Text,NullWritable,Text,NullWritable> {public static enum Counter{MY_INPUT_RECOREDS,MY_INPUT_BYTES}@Overrideprotected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {//方式2:使用枚枚举来定义计数器context.getCounter(Counter.MY_INPUT_RECOREDS).increment(1L);context.write(key, NullWritable.get());}}


public class SortBean implements WritableComparable<SortBean>{private String word;private int num;public String getWord() {return word;}public void setWord(String word) {this.word = word;}public int getNum() {return num;}public void setNum(int num) {this.num = num;}@Overridepublic String toString() {return word + "\t"+ num ;}//实现比较器,指定排序的规则/*规则:第一列(word)按照字典顺序进行排列 // aac aad第一列相同的时候, 第二列(num)按照升序进行排列*/@Overridepublic int compareTo(SortBean sortBean) {//先对第一列排序: Word排序int result = this.word.compareTo(sortBean.word);//如果第一列相同,则按照第二列进行排序if(result == 0){return this.num - sortBean.num;}return result;}//实现序列化@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(word);out.writeInt(num);}//实现反序列@Overridepublic void readFields(DataInput in) throws IOException {this.word = in.readUTF();this.num = in.readInt();}}
public class SortMapper extends Mapper<LongWritable,Text,SortBean,NullWritable> {/*map方法将K1和V1转为K2和V2:K1 V10 a 35 b 7----------------------K2 V2SortBean(a 3) NullWritableSortBean(b 7) NullWritable*/@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1:将行文本数据(V1)拆分,并将数据封装到SortBean对象,就可以得到K2String[] split = value.toString().split("\t");SortBean sortBean = new SortBean();sortBean.setWord(split[0]);sortBean.setNum(Integer.parseInt(split[1]));//2:将K2和V2写入上下文中context.write(sortBean, NullWritable.get());}}
public class SortReducer extends Reducer<SortBean,NullWritable,SortBean,NullWritable> {//reduce方法将新的K2和V2转为K3和V3@Overrideprotected void reduce(SortBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {context.write(key, NullWritable.get());}}
job略
在三大阶段的第一阶段map处理完后,可能数据过多,利用分布式思想,抢在reduce前先做一次合并,后再由reduce合并,目的是:提高网络IO 性能
实现步骤


//第三(分区),四 (排序)//第五步: 规约(Combiner)job.setCombinerClass(MyCombiner.class);//第六步 分布

案例:流量统计(key相同则++++++++)

public class FlowBean implements Writable {private Integer upFlow; //上行数据包数private Integer downFlow; //下行数据包数private Integer upCountFlow; //上行流量总和private Integer downCountFlow;//下行流量总和//下略get set 序列化 反序列化
public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {/*将K1和V1转为K2和V2:K1 V10 1363157985059 13600217502 00-1F-64-E2-E8-B1:CMCC 120.196.100.55 www.baidu.com 综合门户 19 128 1177 16852 200------------------------------K2 V213600217502 FlowBean(19 128 1177 16852)*/@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1:拆分行文本数据,得到手机号--->K2String[] split = value.toString().split("\t");String phoneNum = split[1];//2:创建FlowBean对象,并从行文本数据拆分出流量的四个四段,并将四个流量字段的值赋给FlowBean对象FlowBean flowBean = new FlowBean();flowBean.setUpFlow(Integer.parseInt(split[6]));flowBean.setDownFlow(Integer.parseInt(split[7]));flowBean.setUpCountFlow(Integer.parseInt(split[8]));flowBean.setDownCountFlow(Integer.parseInt(split[9]));//3:将K2和V2写入上下文中context.write(new Text(phoneNum), flowBean);}}
public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {//1:遍历集合,并将集合中的对应的四个字段累计Integer upFlow = 0; //上行数据包数Integer downFlow = 0; //下行数据包数Integer upCountFlow = 0; //上行流量总和Integer downCountFlow = 0;//下行流量总和for (FlowBean value : values) {upFlow += value.getUpFlow();downFlow += value.getDownFlow();upCountFlow += value.getUpCountFlow();downCountFlow += value.getDownCountFlow();}//2:创建FlowBean对象,并给对象赋值 V3FlowBean flowBean = new FlowBean();flowBean.setUpFlow(upFlow);flowBean.setDownFlow(downFlow);flowBean.setUpCountFlow(upCountFlow);flowBean.setDownCountFlow(downCountFlow);//3:将K3和V3下入上下文中context.write(key, flowBean);}}
public class JobMain extends Configured implements Tool {//该方法用于指定一个job任务@Overridepublic int run(String[] args) throws Exception {//1:创建一个job任务对象Job job = Job.getInstance(super.getConf(), "mapreduce_flowcount");//如果打包运行出错,则需要加该配置job.setJarByClass(JobMain.class);//2:配置job任务对象(八个步骤)//第一步:指定文件的读取方式和读取路径job.setInputFormatClass(TextInputFormat.class);//TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/wordcount"));TextInputFormat.addInputPath(job, new Path("file:///D:\\input\\flowcount_input"));//第二步:指定Map阶段的处理方式和数据类型job.setMapperClass(FlowCountMapper.class);//设置Map阶段K2的类型job.setMapOutputKeyClass(Text.class);//设置Map阶段V2的类型job.setMapOutputValueClass(FlowBean.class);//第三(分区),四 (排序)//第五步: 规约(Combiner)//第六步 分组//第七步:指定Reduce阶段的处理方式和数据类型job.setReducerClass(FlowCountReducer.class);//设置K3的类型job.setOutputKeyClass(Text.class);//设置V3的类型job.setOutputValueClass(FlowBean.class);//第八步: 设置输出类型job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径TextOutputFormat.setOutputPath(job, new Path("file:///D:\\out\\flowcount_out"));//等待任务结束boolean bl = job.waitForCompletion(true);return bl ? 0:1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动job任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}
如增加需求:
上行流量倒序排序
public class FlowBean implements WritableComparable<FlowBean> {//指定排序的规则@Overridepublic int compareTo(FlowBean flowBean) {// return this.upFlow.compareTo(flowBean.getUpFlow()) * -1;return flowBean.upFlow - this.upFlow ;}}
需求:手机号码分区

public class FlowCountPartition extends Partitioner<Text,FlowBean> {/*该方法用来指定分区的规则:135 开头数据到一个分区文件136 开头数据到一个分区文件137 开头数据到一个分区文件其他分区参数:text : K2 手机号flowBean: V2i : ReduceTask的个数*/@Overridepublic int getPartition(Text text, FlowBean flowBean, int i) {//1:获取手机号String phoneNum = text.toString();//2:判断手机号以什么开头,返回对应的分区编号(0-3)if(phoneNum.startsWith("135")){return 0;}else if(phoneNum.startsWith("136")){return 1;}else if(phoneNum.startsWith("137")){return 2;}else{return 3;}}}
//第三(分区),四 (排序)job.setPartitionerClass(FlowCountPartition.class);//第五步: 规约(Combiner)//第六步 分组//设置reduce个数job.setNumReduceTasks(4);
标签:编号 exception spl 将不 height 方式 ros 功能 one
原文地址:https://www.cnblogs.com/leccoo/p/11337386.html