标签:rap red pat cti model explain each 转换 example
graph model explaination:
https://www.lintcode.com/help/graph
Example 1:
Input: {1,2,4#2,4#3,5#4#5#6,5}
Output: [[1,2,4],[3,5,6]]
Explanation:
1----->2 3-->5
\ | ^
\ | |
\ | 6
\ v
->4
Example 2:
Input: {1,2#2,3#3,1} Output: [[1,2,3]]
思路:
可以把每条有向边看成无向边, 就等同于在无向图中寻找联通块.
两种做法: 1. BFS/DFS 2. 并查集 (但由于输入数据是有向边, 所以使用并查集更合适, 否则还需要先把有向边转换成无向边)
public class Solution {
class UnionFind {
HashMap<Integer, Integer> father = new HashMap<Integer, Integer>();
UnionFind(HashSet<Integer> hashSet) {
for(Integer now : hashSet) {
father.put(now, now);
}
}
int find(int x) {
int parent = father.get(x);
while(parent != father.get(parent)) {
parent = father.get(parent);
}
return parent;
}
int compressed_find(int x) {
int parent = father.get(x);
while (parent != father.get(parent)) {
parent = father.get(parent);
}
int temp = -1;
int fa = father.get(x);
while (fa != father.get(fa)) {
temp = father.get(fa);
father.put(fa, parent) ;
fa = temp;
}
return parent;
}
void union(int x, int y) {
int fa_x = find(x);
int fa_y = find(y);
if (fa_x != fa_y)
father.put(fa_x, fa_y);
}
}
List<List<Integer>> print(HashSet<Integer> hashSet, UnionFind uf) {
List<List<Integer>> ans = new ArrayList<List<Integer>>();
HashMap<Integer, List <Integer>> hashMap = new HashMap<Integer, List<Integer>>();
for (int i : hashSet) {
int fa = uf.find(i);
if (!hashMap.containsKey(fa)) {
hashMap.put(fa, new ArrayList<Integer>());
}
List<Integer> now = hashMap.get(fa);
now.add(i);
hashMap.put(fa, now);
}
for (List<Integer> now: hashMap.values()) {
Collections.sort(now);
ans.add(now);
}
return ans;
}
public List<List<Integer>> connectedSet2(ArrayList<DirectedGraphNode> nodes) {
HashSet<Integer> hashSet = new HashSet<Integer>();
for (DirectedGraphNode now : nodes) {
hashSet.add(now.label);
for (DirectedGraphNode neighbour : now.neighbors) {
hashSet.add(neighbour.label);
}
}
UnionFind uf = new UnionFind(hashSet);
for(DirectedGraphNode now : nodes) {
for(DirectedGraphNode neighbour : now.neighbors) {
int fnow = uf.find(now.label);
int fneighbour = uf.find(neighbour.label);
if (fnow != fneighbour) {
uf.union(now.label, neighbour.label);
}
}
}
return print(hashSet , uf);
}
}
Find the Weak Connected Component in the Directed Graph
标签:rap red pat cti model explain each 转换 example
原文地址:https://www.cnblogs.com/FLAGyuri/p/12078600.html