题目大意:
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
Calculate the expectation of the number of times that you cast dice before the end of the game.
解题思路:
求概率一般是正推,求期望一般是逆推。这一点可以从题目中体会出来。
设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1;都和dp[0]有关系,
而且dp[0]就是我们所求,为常数
设dp[i]=A[i]*dp[0]+B[i];
代入上述方程右边得到:dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1 =(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1;
明显A[i]=(∑(pk*A[i+k])+p0) B[i]=∑(pk*B[i+k])+1
先递推求得A[0]和B[0].
那么 dp[0]=B[0]/(1-A[0]);
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
const int maxn = 1000 + 10;
double p[maxn];
double A[maxn], B[maxn];
int n, k1, k2, k3, a, b, c;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
memset(p,0,sizeof(p));
scanf("%d%d%d%d%d%d%d", &n,&k1,&k2,&k3,&a,&b,&c);
p[0] = 1.0/k1/k2/k3;
for(int i=1;i<=k1;i++)
{
for(int j=1;j<=k2;j++)
{
for(int k=1;k<=k3;k++)
{
if(i != a || j != b || k != c)
p[i+j+k] += p[0];
}
}
}
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
for(int i=n;i>=0;i--)
{
A[i] = p[0]; B[i] = 1;
for(int k=1;k<=k1+k2+k3;k++)
{
A[i] += p[k] * A[i+k];
B[i] += p[k] * B[i+k];
}
}
double ans = B[0] / (1 - A[0]);
printf("%.15lf\n", ans);
}
return 0;
}
ZOJ 3329 One Person Game(概率DP)
原文地址:http://blog.csdn.net/moguxiaozhe/article/details/43486975