解法:直接上模版。
扩展欧几里德的模版:
typedef long long LL;
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
LL d=ex_gcd(b,a%b,x,y);
LL t=x;
x=y;
y=t-a/b*y;
return d;
}LL solve(LL n)
{
LL a1,r1,a2,r2;
LL a,b,c,r,x,y;
bool ifhave=true;
scanf("%lld%lld",&a1,&r1);
for(LL i=1;i<n;i++)
{
scanf("%lld%lld",&a2,&r2);
if(ifhave)
{
a=a1,b=a2,c=r2-r1;
r=ex_gcd(a,b,x,y);
if(c%r)
{
ifhave=false;
continue;
}
LL t=b/r;
x=(x*(c/r)%t+t)%t;
r1=a1*x+r1;
a1=a1*(a2/r);
}
}
if(!ifhave)
return -1;
else return r1;
}题目: poj 2891 Strange Way to Express Integers
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long LL;
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
LL d=ex_gcd(b,a%b,x,y);
LL t=x;
x=y;
y=t-a/b*y;
return d;
}
LL solve(LL n)
{
LL a1,r1,a2,r2;
LL a,b,c,r,x,y;
bool ifhave=true;
scanf("%lld%lld",&a1,&r1);
for(LL i=1;i<n;i++)
{
scanf("%lld%lld",&a2,&r2);
if(ifhave)
{
a=a1,b=a2,c=r2-r1;
r=ex_gcd(a,b,x,y);
if(c%r)
{
ifhave=false;
continue;
}
LL t=b/r;
x=(x*(c/r)%t+t)%t;
r1=a1*x+r1;
a1=a1*(a2/r);
}
}
if(!ifhave)
return -1;
else return r1;
}
int main()
{
LL n;
while(cin>>n)
{
cout<<solve(n)<<endl;
}
return 0;
}
原文地址:http://blog.csdn.net/knight_kaka/article/details/28897407