在各种数据挖掘算法中,关联规则挖掘算是比较重要的一种,尤其是受购物篮分析的影响,关联规则被应用到很多实际业务中,本文对关联规则挖掘做一个小的总结。
首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描述的是在一个事物中物品间同时出现的规律的知识模式,现实生活中,比如超市购物时,顾客购买记录常常隐含着很多关联规则,比如购买圆珠笔的顾客中有65%也购买了笔记本,利用这些规则,商场人员可以很...
分类:
其他好文 时间:
2014-10-08 18:24:35
阅读次数:
251
课程简介:
主要内容包括对线性分类及线性回归分析的简单回顾,以及对逻辑回归分析,误差测定与算法三方面的详细讲解,同时对非线性变换的泛化方法进行了剖析....
分类:
其他好文 时间:
2014-10-08 00:16:14
阅读次数:
365
本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘,同样的利用微软案例数据进行简要总结。应用场景介绍通过上一篇中我们采用Microsoft决策树分析算法对已经发生购买行为的订单中的客户属性进行了分析,可以得到几点重要的信息,这里做个总结:1、对于影响...
分类:
数据库 时间:
2014-10-07 23:34:24
阅读次数:
265
本文转自:http://www.52nlp.cn/python-%E7%BD%91%E9%A1%B5%E7%88%AC%E8%99%AB-%E6%96%87%E6%9C%AC%E5%A4%84%E7%90%86-%E7%A7%91%E5%AD%A6%E8%AE%A1%E7%AE%97-%E6%9C%...
分类:
编程语言 时间:
2014-10-07 19:07:03
阅读次数:
331
Apache Mahout项目主要包括以下五个部分:
频繁模式挖掘:挖掘数据中频繁出现的项集。
聚类:将诸如文本、文档之类的数据分成局部相关的组。
分类:利用已经存在的分类文档训练分类器,对未分类的文档进行分类。
推荐引擎(协同过滤):获得用户的行为并从中发现用户可能喜欢的事务。
频繁子项挖掘:利用一个项集(查询记录或购物目录)去识别经常一起出现的项目。
在Maho...
分类:
其他好文 时间:
2014-10-06 00:55:49
阅读次数:
346
入门读物: 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据...
分类:
其他好文 时间:
2014-10-05 21:31:28
阅读次数:
259
前面一直强调Python运用到网络爬虫方面非常有效,这篇文章也是结合学习的Python视频知识及我研究生数据挖掘方向的知识.从而简单介绍下Python是如何爬去网络数据的,文章知识非常简单,但是也分享给大家,就当简单入门吧!同时只分享知识,希望大家不要去做破坏网络的知识或侵犯别人的原创型文章.主要介绍了如何手动爬取新浪播客和CSDN博客的思想和方法.如果有错误或不足之处,请海涵!...
分类:
编程语言 时间:
2014-10-04 17:57:27
阅读次数:
266
好早的时候就打算写这篇文章,但是还是参加阿里大数据竞赛的第一季三月份的时候实验就完成了,硬生生是拖到了十一假期,自己也是醉了。。。找工作不是很顺利,希望写点东西回顾一下知识,然后再攒点人品吧,只能如此了。
一、问题背景
二、基于用户的协同过滤算法介绍
三、数据结构和实验过程设计
四、代码...
分类:
编程语言 时间:
2014-10-03 21:50:45
阅读次数:
281