PyTorch的Variable
import torch as t
from torch.autograd import Variable as V
import matplotlib.pyplot as plt
from IPython import display
# 指定随机数种子
t.manual_seed(1000)
def get_fake_data(batch_size=8):
x = t.rand(batch_size,1)*20
y = x * 2 + 3 + 3*t.randn(batch_size,1)
return x, y
x, y = get_fake_data()
plt.scatter(x.squeeze(), y.squeeze())
w = V(t.rand(1,1),requires_grad=True)
b = V(t.rand(1,1),requires_grad=True)
lr = 0.001
for ii in range(8000):
x, y = get_fake_data()
x, y = V(x), V(y)
# print(x, y)
y_pred = x.mm(w) + b.expand_as(x)
loss = 0.5*(y_pred - y)**2
loss = loss.sum() # 集结loss向量
loss.backward()
w.data.sub_(lr * w.grad.data)
b.data.sub_(lr * b.grad.data)
w.grad.data.zero_()
b.grad.data.zero_()
if ii % 1000 == 0:
display.clear_output(wait=True)
x = t.arange(0,20).view(-1,1)
y = x.mm(w.data) + b.data.expand_as(x)
plt.plot(x.numpy(), y.numpy())
x2, y2 = get_fake_data(batch_size=20)
plt.scatter(x2, y2)
plt.xlim(0,20)
plt.ylim(0,40)
plt.show()
print(w.data.squeeze(), b.data.squeeze())